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SUMMARY

An investigation has been made in the Langley high-speed 7- by
10-foot tunnel by means of the transonic-bump technique to determine
the lift augmentation of several jet-flap configurations. Thrust-recovery
characteristics of some of the thick-wing configurations were also deter-
mined. The investigation covered a Mach number range from 0.40 to 1.K),
and a maxhmm momentum coefficient of 0.30 was obtained at a Mach nuniber
of 0.40.

The results of the investigation indicated that the lift can be
increased at any Mach number by blowing downward through a number of
closely spaced holes along and near the trailing edge of the wing. The
ratio of induced circulation lift to the lift component of the jet reac-
tion increased with Mach number up to high subsonic speeds and then
decreased through the transonic speed range. The induced circulation
lift was greatly reduced when the jet location was moved from near the
trailing edge to the 73-percent-chord line. A jet-augmented flap which
used blowing from a slot on the upper surface in combination with a round
trailing edge lost its effectiveness at Mach nunibersof 0.60 or greater.

A 16-percent-thi& wing with @lowing rearwsrd from a slot at the
trailing edge showed a drag reduction about equivalent
tum throughout the Mach nurber range investigated. In
a wing of similar geometry but with blowing from slots
lower surfaces near the maximum-thickness point showed
that were less than the jet reaction at transotic Mach

INTRODUCTION

Some recent low-speed investigations on jet flaps

to the jet momen-
contrast to this,
on the upper and
drag reductions
nuribers.

(refs. l-to 4)
have shown that remarkably high lift coefficients are obtainable by
directing a thin high-velocity jet sheet of air downward at or near the
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trailing edge of a
grated wing-engine
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wing. These arrangements are representative of inte-
installations where all or a large percentage of the -v

exhaust products are used for conibinedthrust and lift a~entation.
lm exploratory type of investigation has been made to determine the aero- ._._”
dynamic characteristics at transonic speeds of some of these jet-flap
arrangements that appear promising at low speeds. The investigation had
a twofold purpose: to determine the extent of lift augmentation at
tmansonic speeds and to determine whether jet flaps offer possibilities
of drag’reduction on blunt-wing profiles. This investigation was made
in the Langley high-speed 7- by 10-foot tunnel by using the transonic
bump to obtain Mach nunibersfrom 0.40 to 1.10. Iiift,drag, and pitching-
moment data were obtained at angles of attack of -4°, 0°, and 4° for
most configurations through a ramge of momentum coefficients varying —.
fromO to 6.30 at a Mach =Umber o; O.~ and
number of 1.10.

The results of a similar investigation
reported in reference 5.

The data
origin on the
‘and2), which

SYMBOLS

are presented with respect to
wing root chord 1 inch behind
resulted in the moment center

fromO to 0.03 at ailac~

recently made in France are

.

the wind axes, with the
the leading edge (figs. 1
being

percentages of the wing chord as shown in figures

lift coefficient, 2(Semispan lift)
qs

drag coefficient,
2(Semispan drag)

qs

located at different
3 and 4.

pitching-momentcoefficient, 2(Stispan pitching moment)
qsc

incremental lift coefficient,
()
CL

total ()
- CLCa

w

incremental drag coefficient, (CD) ()
- CDC+

total N-

momentum coefficient, ‘JVJ

ge

twice wing area of semispan model, sq ft
}

.
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twice wing span of semispan model, ft

wing chord, ft

aspect ratio, /b2 S

airfoil thickness, f%

free-stream dynamic pressure,

free-stream density, slugs/cu

free-stream velocity, ft/sec

P3~, lJ1/sqft

ft

weight rate of air flow through jet holes or slots on semispan
wing, lb/see

/acceleration due to gravity, 32.2 ft sec

jet-exit velocity, assuming isentropic expansiou to free-

[+]

7-1
T

stream static pressure, — ~ ft~sec
- Pt

>

ratio of specific heats for air, 1.4

universal gas constant, & per deg Rankine

plenum-chamber stagnation temperature, deg Rankine

free-stream static pressure, lb/sq ft

total pressure in plenum chaniber,lb/sq ft

Mach number

local l&ch nurdber

angle of attack of wing-chord plane, deg

jet-deflection angle relative to wing chord plane, positive
downward, deg
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MODELS AND APPARATUS

This investigation uti~zed two basic wing profiles, one having a
conventional NACA 65AO04 airfoil section and the other a built-up sec-
tion. The forward 75 percent of the built-up section was composed of
the forward 28.3 percent of a 10.6-inch-chord NACA 65AO06 airfoil; the
rear 2’5percent of the built-up section was wedge shaped. All other
wing contours tested were modifications of the two basic profiles. The
two basic wings had a semispan of 6.67 inche-=and a chord’of 4.00 inches,
resulting in an aspect ratio of 3.33, and thickness ratios of 4 percent
and 15.6 percent. All wings were unswept and had a taper ratio of 1.0.
The basic wing profiles and modifications thereto which resulted in
changes in wing thickness ratio} aspect rati_o,and trailing-edge con-
figuration are shown in figures 3 and 4. Figure 3 shows the models in
which the air was directed downward for lift augmentation, and figure 4
shows the models in which the compressed air was directed resrward for
drag reduction or thrust recovery.

The thin high-velocity jet sheet which is characteristic of the jet
flap was obtained by having a slot along the full span for models 1,
6, and 7, through which the compressed air was eJected. On the other
models, however, the high-velocity jet sheets were simulated by means
of a row of small closely spaced holes, as indicated in figures 3 and 4.
On the thick wing the compressed air was introduced through a steel
tube which formed an integral part of the model, and on the thin wing
the air was introduced through a rectangular spamwise passage and a
series of connecting holes to the plenum chamber.

The air which was ejected from the model was metered through a
sharp-edge-orifice flowmeter so that the weight flow of air was known
at all times. All models were equipped with pressure tubes andthermo-
couples in the plenum chaaibersso that the static pressure and temper-
ature of the air might be determined.

TESTS

The tests were mde by using the transonic-bump technique in the
Ian@ey 7- by 10-foot tunnel. The models were attached to a five-
component electrical strain-gage balance located beneath the bump sur-
face. The tests were made over a Mach number range from O.kO to 1.10
at the Reynolds numbers shown in figure 5 for the models with the IMXt-
mumwing chord (4.00 inchesj. The variation of the local Mach number
over the bump in the vicinity of the model location-for several Mach –
numbers is shown in figure 6.

.

=“ —
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The momentum coefficient, which was based on the weight flow of
air and the theoretical isentropic exhaust velocity, varied from about.
0.30 at M= 0.40 to about 0.03 at M = 1.10, depending on the model
configuration. The tests were made at angles of attack of 0° and *4°
through the momentum-coefficient range. The jet deflection angles are
the average values obtained from a static calibration. The jet deflec-
tion angles were assumed to be constant throughout the angle-of-attack
and Mach nuniberrange investigated.

RESULTS

The data obtained in the jet-flap investigation reported herein
are presented in the following figures:

Figures

Jets deflected (lift a~entation) . . . . . . . . . . . . . 7 to 13
Jets unreflected (drag reduction) . . . . . . . . . . . . . 14 to 16
S’wmnaryof lift-augmentation characteristics . . . . . . . . 17 and 18
Summary of the drag characteristics . . . . . . . . . . . . 19 and 20

. DISCUSSION

Two types of jet flaps for lift a~entation are represented in
the data of figures 7 to 13. Model 1 is a configuration similar to
those which gave large lift augmentations in the investigations reported
in references 1 and 2. In this case the jet flap was obtainedby ejecting
compressed air through a thin slot on the upper surface of a wing near
a round trailing edge. me air clings to the trailing edge until separa-
tion occurs. On models 2, 3, and 4 the air is ejected at an angle to
the chord plane through a series of closely spaced holes. The holes
were drilled close together with the idea of simulating a full-span
slot; however, no tests were made to determine to what extent this
arrangement simulated a slot. On models 5, 6, and 7 the air was ejected
rearward to determine whether drag reductions greater than the thrust
were obtainable.

The blowing momentum coefficients presented in this report generally
represent a choked condition of the nozzle (slot or holes). There are
some corcibinationsof low mmentum coefficients and low Mach nunibers}
however, for which the holes or slots are unchoked and the velocity of
the free stream is about equal to the velocity of the jet. When the
Jet velocity is about equal to free-stream velocity, a net momentum

4
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coefficient Cp(l - V/V~) w be a better correlation factor than CM.

Because of the _prelWnary nature of this investigation and its limited
instrumentation, it has been necessary to use Cu, since unknown end

possibly large nozzle losses preclude the determination of the actual
jet velocity other than by theoretical isentropic expsasion to free-
stresm pressure. The values of momentum used to obtain the values of
C!w presented are probably larger than the actual momentum of the jet

and should be taken into account,when evaluating and comparing these
data. It is believed, however, that the data are an indication of the
jet-flap potentialities at transonic speeds.

The pitching-ment data are presented without discussion.

I12helift data of figure 7 (model 1) with top-surface blowing from
a full-span slot shows that this jet-flap arrangement is effective in
producing lift at low speeds (M = O.kO) as would be expected from the
results presented in references 1 and 2. At M = 0.60 or above> however>
this arrangement was ineffective; the loss of lift probably results from
failure of the jet to cling to the round trailing edge.

The variation of lift coefficient with momentum coefficient shown
in figure 17 at a = 0° for models 2, 3, and 4 at low Mach numbers is
unlike the variations obtained from wings with full-span blowing-slot
arrangements as in the investigations of references 3 and 4. The data
presented in figure 17 show a low rate of lift-coefficient increase with
momentum coefficient, followed by a rapidly increasing rate of lift with
momentum, in constrast to the initial high rate of lift-coefficient
increase obtained at Iow momentum coefficients in references 3 and 4.
The models of references 3 and 4 have full-span blowing slots at or
close to the trailing edge} whereas the models of this investigation have
a series of close3y spaced holes ahead of the trailing edge.

The chordwise position of the holes is an important factor; the data
of figures 17(c) and 17(d) indicate that it would take greater momentums
to produce a given lift as the position of blowing is moved forward
from the trailing edge.

A comparison of the lift-producing capabilities of models 2, 3,
and k through the Machnumberrange is given in figure 18 in terms of
the ratio of the induced circulation lift coefficient ML - CM sin ~

to the jet reaction component Cu sin 5. This ratio, which is often

referred to as the “lift magnification factor~rris presented for values
of Cp = 0.03 andO.06 at a = OO. These data show that the lift

w.

—

“
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magnification increases with Mach number up to high subsonic speeds and
then decreases through the transonic speed range. For example, model 4.
with CM = 0.03 gave a magnification factor which varied from about 1

at M= 0.40 to a high of about 7 at M = O.&l and decreased to a
value of about 3 at M = 1.10. These results are in general agreement
with results presented in reference 5.

As was noted previously, the chordwise location of the blowing
appears to be very important, as considerably less circulation lift is
obtained from blowing at the 73-percent-chord line than from bl&ng at
the 9k-percent-chord line. The model with blowing at the ~-percent-
chord line (model 3) gave little or no magnification at M = 0.40 but
increased to a maximum value of about 4 at M = 0.90.

Drag

The drag coefficients with no blowing show a large range in magni-
tudes, as might be expected from the differences in thickness and con-
tours of the various models (fig. 19). For example, the 19-percent-
thick model 2 gave drag coefficients which vsried from 23 times the value
of model 3 at M = O.kO to about 9 times the value of model 3 at
M= 1.10. Rrom the large values of drag coefficients obtained, it might
be expected that blowing at or near the trail&g edge would tend to
reduce the basic drag coefficients. There is some evidence that this
reduction does tske place for mdel 5 at very low momentum coefficients
(fig. 20). There is also evidence of drag reductions on lift model 2
at low momentum coefficients. (See figs. 8 and 9.) At Mach numibers
of 0.40 md 0.60, significant reductions of drag occurred with only
slight increases of lift. The 16-percent-thick model 6 with tangential
blowing near the maximum thickness point (~-percent-chord) gave large
thrust losses at transonic Mach numbers. It is possible that the loss
of thrust is the result of shock-induced separation of the jet sheet
from this thick wing, a condition which existed on the lift a~enta-
tion model 1. In contrast to the losses on model 6, model 7 gave rela-
tively good thrust-recovery characteristics through the momentum coef-
ficient and Mach number range investigated; that is, the drag reduction
was about equivalent to the jet momentum frmu

SUMMARY OF RESULTS

An exploratory wind-tunnel investigation

the tratling-e~e slot.

in the range of Mach num-
bers from 0.40 to 1.10 and momentum coefficients from O to 0.30 was made
to determine the aerodynamic characteristics of unswept rectangular wings
equipped with various jet-type flaps. The results are summarized as
follows:
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1. The jet-augmented flap which used blowing from a slot on the
upper surface in combination with a round trailing edge lost its effec-
tiveness at Wch numbers of 0.60 or greater.

.

“

2. The circulation lift, which was dependent on Mach number, was
considerably increased by blowing downward through a nurriberof,closely
spaced holes along and near the trailing edge. The ratio of the induced
lift to the lift component of the jet reaction increased with Mach num-
ber, reaching a maximum value at high subsonic speeds, and then decreased
through the transonic speed range. .-

3. The chordwise location of the blowing appears to be important
on a jet-flap wing as ejection of the air at the 73-percent station gave
considerably less induced circulation lift than the more rearward
94-_percentlocation.

4. A 16-percent-thickwing with rearward air ejection through a
slot at the trailing edge showed a drag redgction about equivalent to
the jet momentum coefficient throughout the Mach nuniberrange investi-
gated. In contrast to this, a wing with shilsr geometry but with
blowing through slots on the upper and lower surface near the maxhmm-
thickness point showed drag reductions that-were less than the jet
reaction through the transonic Mach nuniberrange.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., June 13, 1958.
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